USN

17CS54

Fifth Semester B.E. Degree Examination, July/August 2022 Automata Theory and Computability

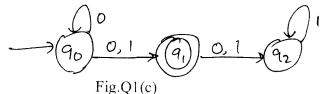
Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

<u>Module-1</u>

1 a. Define the following terms with example:


(i) Alphabet (ii) Power of an Alphabet (iii) Language

(06 Marks)

b. Define Deterministic FSM. Draw a DFSM to accept decimal strings which are divisible by 3.

(07 Marks)

c. Convert the following NDFSM to its equivalent DFSM [Refer Fig.Q1(c)].

Also write transition table for DFSM.

(07 Marks)

OR

2 a. Minimize the following FSM [Refer Fig.Q2(a)].

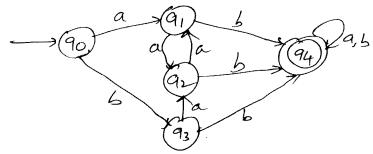


Fig.Q2(a)

(07 Marks)

- b. Construct a Melay Machine which accepts a binary number and produces its equivalent 1's complement. (07 Marks)
- c. Construct a Moore machine which accepts strings of a's and b's and count the number of times the pattern 'ab' present in the string. (06 Marks)

Module-2

3 a. Define Regular Expression. Obtain Regular Expression for the following:

(i) $L = \{ a^n b^m \mid m + n \text{ is even } \}$

(ii) $L = \{ a^n b^m | m \ge 1, n \ge 1, nm \ge 3 \}$

(iii) $L = \{ w : |w| \mod 3 = 0 \text{ where } w \in (a, b)^* \}$

(iv) $L = \{ a^{2n}b^{2m} | n \ge 0, m \ge 0 \}$

(08 Marks)

b. Let L be the language accepted by the following finite state machine. [Refer Fig.Q3(b)]

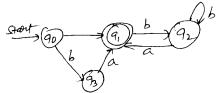


Fig.Q3(b)

Indicate for each of the following regular expression, whether it correctly describes L:

- (i) $(a \cup ba) bb^*a$
- (ii) $(\in \cup b)$ a $(bb^*a)^*$
- (iii) ba ∪ ab aa
- (iv) ba \cup ab * a \cup a
- (v) $(a \cup ba) (bb^*a)^*$

(05 Marks)

c. Consider the DFSM shown in below Fig.Q3(c).

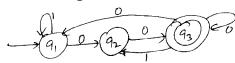


Fig.Q3(c)

Obtain the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and simplify the regular expression as much as possible. (07 Marks)

OR

4 a. State and prove the pumping Lemma theorem for regular language.

(07 Marks)

b. Show that the language $L = \{a^n b^n \mid n \ge 0\}$ is not regular.

(07 Marks)

c. If L_1 and L_2 are regular language then prove that $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* are regular languages. (06 Marks)

Module-3

5 a. Define CFG. Write CFG for the language

(i) $L = \{ 0^n 1^n | n \ge 1 \}$

(ii)
$$L = \{ a^n b^{n+3} | n \ge 1 \}$$

(08 Marks)

b. Consider the grammar

$$E \rightarrow + EE \mid *EE \mid - EE \mid x \mid y$$

Find LMD and RMD for the string +*-xy xy and write parse tree.

(08 Marks)

c. Is the following grammar Ambiguous?

$$S \rightarrow iC + S \mid iC + SeS \mid a$$

$$C \rightarrow b$$

(04 Marks)

OR

- 6 a. Define PDA. Obtain PDA to accept the language $L(M) = \{w \subset w^R \mid w \in (a+b)^*\}$, where w^R is reverse of w by a final state. (08 Marks)
 - b. Convert the following CFG into PDA

 $S \rightarrow aABC$

 $A \rightarrow aB \mid a$

 $B \rightarrow bA \mid b$

 $C \rightarrow a$ (06 Marks)

c. Convert the following grammar into CNF: $S \rightarrow 0A \mid 1B$ $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB | 0S | 0$ (06 Marks) Module-4 Show that $L = \{a^n b^n c^n \mid n \ge 0 \}$ is not context free. (06 Marks) b. Prove that CFL's are closed under union, concatenation and star operation. (06 Marks) c. Design a Turing Machine to accept $L = \{0^n1^n \mid n \ge 1\}$ (08 Marks) OR Design a Turing machine to accept $L=\{a^nb^nc^n\mid n\geq 1\}$. Show the moves made by TM for 8 the string aabbcc. (10 Marks) b. Explain with neat diagram, the working of a Turing machine model. (05 Marks) c. Write a note on Multitape turing machine. (05 Marks) Module-5 9 Design a turing machine to accept the language $L = \{0^n1^n \mid n \ge 1 \}$. Draw the transition diagram. Show the moves made by this machine for the string 000!11. b. Write short notes on: (i) Post correspondence problem (ii) Linear bounded automata. (08 Marks) OR 10 Write short notes on: Church turing thesis b. Quantum computers c. Classes of P and NP d. Undecidable languages (20 Marks)

* * * * >